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evaluation of concrete drilled-shaft bridge foundations using numerical analysis. Effects of tube
material, tube bending, concrete curing, hydration, heat transfer, residual stress, surrounding
ground conditions, cracking, internal rebar support, and external loading on the seismic velocity
CSL measurements are shown. This project provides designers, inspectors, and contractors with
a basis for understanding basic principles of the chemistry, physics, and mechanics involved in
the process of drilled shaft construction, and for evalyating data presented by the CSL technique.
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SI* (MODERN METRIC) CONVERSION FACTORS

APPROXIMATE CONVERSIONS TO SI UNITS
Symbol When You Know Multiply By To Find Symbol
LENGTH
in inches 25.4 Millimeters mm
ft feet 0.305 Meters m
yd yards 0.914 Meters m
mi miles 1.61 Kilometers Km
AREA
in? square inches 645.2 Square millimeters mm?
fit? square feet 0.093 Square meters m?
yd? square yard 0.836 Square meters m?
ac acres 0.405 Hectares ha
mi? square miles 2.59 Square kilometers km?
VOLUME
fl oz fluid ounces 29.57 Milliliters mL
gal gallons 3.785 Liters L
ft® cubic feet 0.028 cubic meters m®
yd® cubic yards 0.765 cubic meters m®
NOTE: volumes greater than 1000 L shall be shown in m®
MASS
oz ounces 28.35 Grams g
Ib pounds 0.454 Kilograms kg
T short tons (2000 Ib) 0.907 megagrams (or "metric ton") Mg (or "t")
TEMPERATURE (exact degrees)
°F Fahrenheit 5 (F-32)/9 Celsius °C
or (F-32)/1.8
ILLUMINATION
fc foot-candles 10.76 Lux Ix
fl foot-Lamberts 3.426 candela/m? cd/m?
FORCE and PRESSURE or STRESS
Ibf poundforce 4.45 Newtons N
Ibf/in poundforce per square inch 6.89 Kilopascals kPa
APPROXIMATE CONVERSIONS FROM SI UNITS
Symbol When You Know Multiply By To Find Symbol
LENGTH
mm millimeters 0.039 Inches in
m meters 3.28 Feet ft
m meters 1.09 Yards yd
km kilometers 0.621 Miles mi
AREA
mm? square millimeters 0.0016 square inches in?
m? square meters 10.764 square feet t?
m? square meters 1.195 square yards yd?
ha hectares 2.47 Acres ac
km? square kilometers 0.386 square miles mi?
VOLUME
mL milliliters 0.034 fluid ounces fl oz
L liters 0.264 Gallons Gal
m® cubic meters 35.314 cubic feet t3
m® cubic meters 1.307 cubic yards yd®
MASS
g grams 0.035 Ounces oz
kg kilograms 2.202 Pounds b
Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000 Ib) T
TEMPERATURE (exact degrees)
“C Celsius 1.8C+32 Fahrenheit °F
ILLUMINATION
Ix lux 0.0929 foot-candles fc
cd/m? candela/m? 0.2919 foot-Lamberts fl
FORCE and PRESSURE or STRESS
N newtons 0.225 Poundforce Ibf
kPa kilopascals 0.145 poundforce per square inch Ibf/in?

*Sl is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380.
(Revised March 2003)
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